Contrasting regulation of macrophage iron homeostasis in response to infection with Listeria monocytogenes depending on localization of bacteria.
نویسندگان
چکیده
Due to its multiple roles for the proliferation and pathogenicity of many microbes on the one hand and via modulation of immune effector functions on the other hand the control over iron homeostasis is thought to play a decisive role in the course of infections. Diversion of cellular iron traffic is considered as an important defense mechanism of macrophages to reduce metal availability for intracellular bacteria residing in the phagosome. However, evidence is lacking whether such alterations of iron homeostasis also become evident upon infection with bacteria gaining access to the cytosol like Listeria monocytogenes. Here we show that infection of macrophages with L. monocytogenes triggers the expression of the major cellular iron exporter ferroportin1 and induces cellular iron egress. As the growth of Listeria within macrophages is promoted by iron, stimulation of ferroportin1 functionality limits the availability of the metal for Listeria residing in the cytoplasm, whereas ferroportin1 degradation upon hepcidin treatment increases intracellular bacterial growth. In parallel to an increase of ferroportin1 expression, infected macrophages induce anti-microbial immune effector mechanisms such as TNFα formation or NO expression which are aggravated upon iron deficiency. These adaptive changes of iron homeostasis and immune response pathways are only found in macrophages infected with Listeria which express listeriolysin O and are therefore able to escape from the phagosome to the cytoplasm. Listeriolysin O deficient Listeria which are restricted to the phagosome are even killed by excess iron which may be based on "iron intoxification" via macrophage radical formation, because iron supplementation in that setting is paralleled by increased ROS formation. Our results indicate that ferroportin1 mediated iron export is a nutritional immune effector pathway to control infection with Listeria residing in the cytoplasm, whereas a different strategy is observed in mutant Listeria restricted to the phagosome, where iron remains in the macrophages likewise contributing to ROS mediated intoxification of bacteria.
منابع مشابه
Listeria monocytogenes modulates macrophage cytokine responses through STAT serine phosphorylation and the induction of suppressor of cytokine signaling 3.
Macrophage activation as part of natural resistance to infection is caused by stimulation with IFN-gamma and by the invading microorganisms or microbial products. Infection of macrophages with the Gram-positive bacterium Listeria monocytogenes for short periods before activation with IFN-gamma increased the phosphorylation of transcription factor STAT1 at S727 and thereby the expression of IFN-...
متن کاملmicroRNA Response to Listeria monocytogenes Infection in Epithelial Cells
microRNAs represent a family of very small non-coding RNAs that control several physiologic and pathologic processes, including host immune response and cancer by antagonizing a number of target mRNAs. There is limited knowledge about cell expression and the regulatory role of microRNAs following bacterial infections. We investigated whether infection with a Gram-positive bacterium leads to alt...
متن کاملAn In Vitro Study on Impact of Environmental Stresses on Growth, Morphological and Biochemical Features of Listeria monocytogenes PTCC 1297
Introduction: Listeria monocytogenes is a serious concern for the food industry due to its high case fatality rate, widespread distribution, ability to survive a wide variety of food processing conditions, and the severity of the illness associated with this pathogen infection. The objective of this study was to determine the growth, cell morphology and biochemical characteristics of L. monocyt...
متن کاملThe role of the activated macrophage in clearing Listeria monocytogenes infection.
Macrophage activation often contributes to the strong immune response elicited upon infection. The ability of macrophages to become activated was discovered when sub-lethal primary infections of mice with the bacterium Listeria monocytogenes provided protection against secondary infections through non-humoral immunity. L. monocytogenes infect and propagate in macrophages by escaping the phagoso...
متن کاملMitogen-activated protein kinase-activated protein kinase 2-deficient mice show increased susceptibility to Listeria monocytogenes infection.
Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is one of several kinases activated through direct phosphorylation by p38 mitogen-activated protein kinase. MK2 regulates LPS-induced TNF mRNA translation, and targeted mutation of the MK2 gene renders mice more resistant to D-galactosamine plus LPS-induced liver damage. In the present study, we investigated the role of MK2 in im...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Metallomics : integrated biometal science
دوره 7 6 شماره
صفحات -
تاریخ انتشار 2015